
Numerical models of flow patterns around a rigid inclusion in a viscous

matrix undergoing simple shear: implications of model parameters and

boundary conditions

Nibir Mandala, Susanta Kumar Samantaa, Chandan Chakrabortyb,*

aDepartment of Geological Sciences, Jadavpur University, Kolkata 700032, India
bGeological Studies Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata 700108, India

Received 29 November 2004; received in revised form 5 April 2005; accepted 8 May 2005

Available online 19 July 2005

Abstract

The hydrodynamic models that have recently been developed to investigate the nature of flow around coherent, rigid inclusions in simple

shear reveal two contrasting patterns with eye-shaped and bow-tie shaped separatrix, even though all the models are based on Navier–Stokes

law. In order to find the cause of this variance, this paper reviews the existing models in the light of different boundary conditions imposed on

individual models. Scrutiny of the models reveals that inclusion–matrix systems, when considered infinitely extended in space, develop eye-

shaped flows. However, those with finite dimensions essentially display bow-tie shaped flows. Using a finite element method (FEM), we

advance the study to show the additional effects of model/inclusion dimension ratio (DR) and model aspect ratio (AR) under different

boundary conditions. In the flow with bow-tie shaped separatrix, the regions of back flow define a nearly semi-circular geometry when DR is

low (!2). These regions assume a semi-elliptical shape with increasing DR. The distance of stagnation points from the inclusion is found to

increase non-linearly with DR. Model results suggest that transformation of a flow with eye-shaped separatrix to that with bow-tie shaped

separatrix can occur due to increasing AR under a specific boundary condition. Applying FEM results in geological situations thus requires

the appropriate choice of dimensional parameters of the model as well as the kinematic conditions imposed at the model boundaries.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Under simple shear deformation, the presence of circular

rigid inclusions within a ductile matrix induces pertur-

bations in the flow, which results in two major flow types:

one with eye-shaped separatrix and the other with bow-tie

shaped separatrix (Fig. 1; cf. Passchier and Soukoutis, 1993;

Passchier et al., 1993; Passchier, 1994; Bons et al., 1997).

Physical and numerical experiments suggest that the

geometry of porphyroclast tails (e.g. f-, s-, d-types) is

primarily controlled by the nature of flow around inclusions

(Passchier and Simpson, 1986; Passchier and Soukoutis,

1993; Passchier et al., 1993; Passchier, 1994; Bons et al.,
0191-8141/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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1997; Mandal et al., 2000; Bose and Marques, 2004).

Accordingly, there have been several attempts to investigate

the different physical parameters that could control the flow

pattern (Masuda and Ando, 1988; Bjornerud and Zhang,

1995; ten Brink and Passchier, 1995; Masuda and Mizuno,

1996; Jezek et al., 1999; Pennacchioni et al., 2000; Mandal

et al., 2001; Marques and Coelho, 2001; Taborda et al.,

2004; Marques et al., 2005). Matrix rheology (Passchier,

1994) and inclusion–matrix coherence (Pennacchioni et al.,

2000) have been identified as possible factors influencing

the flow pattern. Samanta et al. (2003) have shown that the

flow pattern changes from eye-shaped to bow-tie shaped

with increase in volume concentration of inclusion in a

multiple inclusion system. Using FEMs Marques et al.

(2005) derived a variety of flow paths by varying the ratio of

shear-model width and inclusion diameter (S). Employing

very small values of this ratio (1.1–1.5) they have obtained

flow patterns, which do not conform to any of the previous

results. For example, their simulations yield multiple
Journal of Structural Geology 27 (2005) 1599–1609
www.elsevier.com/locate/jsg

http://www.elsevier.com/locate/jsg


 

 

Fig. 1. Two principal types of flow around a circular rigid inclusion under

simple shear: flow with eye-shaped separatrix and flow with bow-tie shaped

separatrix.
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stagnation points in the flow. However, this type of flow

field is yet to be verified from physical experiments and

explored in relation to geological features, such as

porphyroclast tails, commonly observed in natural shear

zones.

It follows from the above discussion that the flow pattern

around a rigid inclusion may show a wide variation

depending on the modeling approach and choice of

boundary conditions (Bons et al., 1997). In this paper, we

thus review the existing continuum models, and from there

deduce the physical basis for the development of eye-shaped

and bow-tie shaped flow pattern in a single-inclusion/matrix

system under natural conditions. The study is advanced to

demonstrate the effects of matrix:inclusion volume pro-

portion, model geometry and boundary settings on the

nature of flow around a circular, coherent inclusion.
2. Review of continuum models

In this discussion we consider only those models that

describe the flow patterns around circular, coherent rigid

inclusions under bulk shear flow. With the help of an

analytical solution of the velocity functions, based on

Navier–Stokes equations, Masuda and Ando (1988)

determined particle paths around a rigid inclusion. The

expressions of the velocity functions were derived for a

model with the following kinematic conditions at the model

boundaries (Fig. 2a)

uZ 1; vZ 0; wZ 0 at zZ 5 (1a)

uZK1; vZ 0; wZ 0 at zZK5 (1b)

where u, v, w are velocity components along the Cartesian

co-ordinate axes, x, y and z, respectively, and the model is

considered as being deformed by shear gZ1 along x-axis on
the xz plane. Considering that the inclusion rotates at an

angular speed of half the bulk shear rate (Jeffery, 1922;

Ghosh and Ramberg, 1976; Passchier, 1986), the velocity

conditions at the inclusion–matrix interface can be given by

uZKz=10; vZ 0 and wZ x=10 at r Z 1 (2)

where r is the inclusion radius. Based on the solid harmonic

functions (Lamb, 1932) they have determined the velocity

field around a fixed inclusion, and then added it with that of

a rotating inclusion, the expression of which is as follows:

ub ZK
z

10r3
; vb Z 0; wb Z

x

10r3
(3)

The values of the velocity components becomes

negligibly small at the model boundaries (zZG5), and so

Masuda and Ando (1988) assumed that the flow pertur-

bations due to rotation of rigid inclusion vanishes at the

model boundary. Following this theoretical approach they

obtained particle paths around a rigid inclusion under bulk

shear, which is characterized by eye-shaped separatrix

(Fig. 2a). In this flow there is no stagnation points defining

the boundary of flow reversal on the central plane parallel to

the bulk shear plane, which is also evident from Eq. (3)

representing the perturbations by the rigid rotation of

inclusions. The perturbations due to a stationary inclusion in

simple shear flow do not contribute to motion of particles

across the shear-parallel central plane (see eqs. (4) and (5) of

Masuda and Ando (1988)).

ten Brink and Passchier (1995) presented results obtained

from computer simulations, demonstrating the streamline

patterns around a circular rigid body. A rectangular (aspect

ratio: 3) model was chosen for the simulation, where its

width is 1.5 times the inclusion diameter. It appears that the

deformation conditions at the model boundaries were set

similar to that occurring in ring shear (see Bons et al., 1997).

In this case the shear profile at the lateral boundaries of the

model may deviate from that of homogeneous simple shear.

In contrast to the model of Masuda and Ando (1988), their

model develops a flow pattern with bow-tie shaped

separatrix (Fig. 2b). The stagnation points are located at a

distance of nearly 0.5 times the inclusion radius. The width

of the hyperbolic separatrix occurring between uni-

directional and reversing flow paths attains a maximum

value of about 0.5 the inclusion radius (Fig. 2b).

Employing the FEM, Masuda and Mizuno (1996) studied

the flow patterns around circular rigid inclusions consider-

ing both Newtonian and non-Newtonian matrices. They

considered finite models with length and width 2.68 times

the inclusion diameter. A Cartesian co-ordinate reference,

xy, is chosen at the inclusion center with the x-axis parallel

to shear direction. The boundary conditions for the velocity

components follow:

At the model boundary,

uZ y and vZ 0; ðtaking far � field shear strain rate gZ 1Þ

(4)



 

 

 

 

Fig. 2. (a) Flow around a rigid inclusion in numerical model under simple shear (after Masuda and Ando, 1988). Initial model with geometrical considerations

(above) and particle paths with eye-shaped separatrix (below). (b) Numerical simulation of displacement vectors (arrows) in flow around a circular rigid

inclusion under dextral shear (after ten Brink and Passchier, 1995). Note bow-tie shaped separatrix (dashed lines) in the flow. The initial model was rectangular,

and deformed by giving shear displacements at the upper and lower boundaries, simulating the condition as in ring shear. (c) Eye-shaped flow patterns in

models with matrix of power-rheology (after Masuda and Mizuno, 1996). n, stress exponent. Note that the flow pattern does not change significantly with

increasing n.
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At the surface of inclusion,

uZwy and vZKwx (5)

u and v are velocity components along the x- and y-axis,

respectively. They have shown that w, rotation rate of

spherical inclusion, will be 0.5g, irrespective of matrix

rheology. In the FEMs there were 504 triangular elements

with 36 nodes on the periphery of the area and on the

periphery of inclusion. In each triangular element, the

velocity components were expressed in terms of linear

functions as

uZ aCbxCcy (6a)

vZ dCexC fy (6b)

a, b, c. are unique constants for each triangular element,

which need to be determined employing FEMs (details

given in Masuda and Mizuno (1996)). Models with nZ1

develop particle paths with an eye-shaped separatrix

(Fig. 2c), which is reasonably consistent with that of

Masuda and Ando (1988). Models with nO1 show similar

flow patterns around rigid inclusions, albeit there are some

quantitative changes in the flow with increasing n. In models
with nZ3, particles located at a distance of 1.07R (R:

inclusion radius) show close paths intersecting the central

line parallel to the shear direction at a distance of 2.03R. On

the other hand, for nZ5, a particle at a distance of 1.05R

describes a close path intersecting the central line at a

distance of 1.77R. However, the overall pattern of particle

paths does not vary dramatically with increasing n, i.e. non-

linearity in matrix rheology. According to the FEMs of

Masuda and Mizuno (1996) the flow pattern around a rigid

sphere is characterized by eye-shaped separatrix, irrespec-

tive of matrix rheology, in contrast to the model of ten Brink

and Passchier (1995) demonstrating the flow pattern with

bow-tie shaped separatrix. They infer, with the help of an

analytical solution for the flow field (eq. (25) of Masuda and

Mizuno, 1996), that there cannot be any stagnation points

even if the model is considered large in its lateral extent.

Pennacchioni et al. (2000) investigated the nature of flow

around a circular rigid inclusion in FEMs for both Newtonian

and non-Newtonian rheology of the matrix. The models have

been developed considering Navier–Stokes equations:

mV2uKVpZ 0 (7a)
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and the equation of continuity:

VuZ 0 (7b)

Theyhave employedFEMs in two dimensions. Themodels

are based on the first quadrant of the Cartesian space

considered at the center of inclusion, taking into account a

square region with the side length five times the inclusion

radius (Fig. 3a). The region is meshed including 2204

quadrilateral elements and 2108 nodes. In the present

discussion we consider their models containing coherent

inclusions,which rotatewith a velocityhalf the bulk shear rate.

Their models always yield streamline patterns with bow-tie

shaped separatrix (Fig. 3a). The streamline patterns do not

vary significantly with increasing value of stress exponent (n).

Flow with eye-shaped separatrix develops only when a slip

condition is imposed at the inclusion–matrix interface. It thus

appears that the results of Masuda and Mizuno (1996) and

Pennacchioni et al. (2000) do not converge, even though both

the analyses deal with power law rheology of the matrix.
Fig. 3. (a) Consideration of a quarter finite element model (above) by Pennacchion

along x1 and x1 axes of the Cartesian coordinate axes chosen at the center of inclusi

the boundary of inclusion, which rotates at an angular velocity of _g=2; _g is the rate

model boundaries. Corresponding flow pattern (bow-tie shaped) is shown below. S

based on a velocity function for an infinitely extended matrix (Mandal et al., 2001).

conditions shown in terms of velocity components parallel and perpendicular to

pressure.
Mandal et al. (2001) have shown the flow pattern around

a rigid inclusion embedded in an infinitely extended viscous

medium. Based on Jeffery’s theory, they have described

velocity functions for flow around an elliptical inclusion.

Considering the bulk deformation in simple shear, the

expressions of the functions follow:

uZ
_gb

2
2ðaDKbCÞCEg
� �

yC _gby

K
2Dxy

b02x2 Ca02y2
_gb

2

EC2a02CC2b02D

a02

� �
x

� �
(8a)

v0 ZK
_gb

2
2ðaDKbCÞKEg
� �

x

K
2Dxy

b02x2 Ca02y2
_gb

2

EC2a02CC2b02D

b02

� �
y

� �
(8b)

where a0Z
ffiffiffiffiffiffiffiffiffiffiffiffiffi
a2Cl

p
, b0Z

ffiffiffiffiffiffiffiffiffiffiffiffiffi
b2Cl

p
and DZa0b0. The
i et al. (2000). Radius of inclusion, rZ1. u1 and u2 are velocity components

on. ut and un are tangential and normal velocity components, respectively, at

of bulk shear. Displacement conditions are shown in terms of u1 and u2 at the

olid circles mark stagnation points. (b) Particle paths in numerical model run

(c) Streamline patterns in models of Bons et al. (1997) under three boundary

the shear direction, ux and uy and pressure p. P is the constant background
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parameters in Eqs. (8a) and (8b) have the following

expressions:

aZ
2

ða2 Kb2Þ

a0 Kb0

a0

� �
; bZ

2

ða2 Kb2Þ

a0 Kb0

b0

� �
;

gZ
2

ða2 Kb2Þ2
ða0 Kb0Þ2

a0b0

� �
: AZ

ðaCbÞ2

8
;

BZK
ðaCbÞ2

8
; C ZDZ

abðaCbÞ2

4ða2 Cb2Þ
;

EZKab
ðaCbÞ2

2
; F Z

a2 Cb2

4
ðaCbÞ2

With the help of the velocity functions (Eqs. (8a) and

(8b)) they have simulated the flow around a rigid inclusion

in simple shear (Fig. 3b). The flow pattern is characterized

by eye-shaped separatrix, which is similar to that shown by

Masuda and Ando (1988). In Eq. (8b) the velocity

component at right angle to the shear direction cannot be

zero on the shear-parallel central plane (i.e. yZ0) for xO0.

It is thus possible to infer analytically that a circular

inclusion embedded in an infinitely extended matrix,

subjected to a far-field homogeneous shear, cannot have

any stagnation points, which are required for the flow with

bow-tie shaped separatrix. This can be shown analytically

again using Lamb’s theory. Using the theory, Happel (1957)

derived the velocity functions of flow around rigid

inclusions as a function of volume concentration of

inclusions. In the case of very low concentrations, the

expressions in polar coordinates can be written as:

vr Z
1

2
1K

5

2

a

r

� 	3

C
3

2

a

r

� 	5
� �

_gr sin 2q (9a)

vq Z
1

2
1K

a

r

� 	5
� �

_gr cos 2qK
_g

2
r (9b)

where a is the radius of inclusion. The last term in Eq. (9b)

represents the rigid rotation component of bulk shear.

According to Eq. (9b), the velocity of particles across the

central line parallel to the shear direction (qZ0) cannot be

zero for any finite value of r, which is required to define the

stagnation points in a flow with bow-tie shaped separatrix. It

thus appears from Happel’s analysis also that the flow

around a circular inclusion will be essentially characterized

by eye-shaped separatrix.

The work of Bons et al. (1997) demonstrates that the

contrasting flow patterns develop due to differences in the

boundary conditions imposed on the models. They have

considered square initial models, containing an inclusion

with a diameter 1/12th the model dimension, and effective

viscosity 100 times that of the matrix. Two parameters were

considered at the boundary: background pressure and

velocity vectors, which can be independently set at the

boundaries of FEMs. The three conditions are as follows

(Fig. 3c): (1) the model is deformed by homogeneous shear

displacement at its four boundaries as is done in shear box
experiments. (2) The model involves shear-parallel dis-

placement component at the model boundaries parallel to

the bulk shear, and no shear-across velocity component at

the other pair of model boundaries, and imposes a constant

background pressure acting as normal stress to all the model

boundaries. This simulates an inclusion–matrix system

where simple shear boundary conditions are imposed at

infinity from the inclusion. (3) The shear-parallel model

boundaries are subjected to the condition as in condition 1

but the side boundaries are kept under a normal stress equal

to a constant background pressure and there is no velocity

across the shear direction such as in a ring shear apparatus.

Bons et al. (1997) have shown that flow with eye-shaped

separatrix develops only under boundary condition 2, which

is considered to be the best approximate for the solution of

the case of inclusion within an infinitely extended matrix.

Flows with bow-tie shaped separatrix are obtained in the

other two conditions (Fig. 3c).

We now attempt to understand the flow perturbations in an

infinitely extended inclusion–matrix system from the physical

point of view. A homogeneous, steady state shear flow can be

representedbya set of parallel particle paths and streamlines in

the matrix without any rigid inclusion (Fig. 4a). The presence

of an inclusion in the systemwould perturb the flowpath in the

radial directions as when a spherical body is set in a stationary

fluid yielding radial streamlines (Fig. 4b). Understandably, the

radial perturbation would tend to be zero away from the body.

The resultant of the streamlines for homogeneous flow and the

perturbed one will be symmetrically distorted resulting in a

convexity perpendicular to the shear direction (Fig. 4c). Now,

the spherical body, if considered to be rotating in the stationary

medium, would induce additional tangential flow in its

neighborhood, forming concentric streamlines (Fig. 4d), as

given inEq. (3) (MasudaandAndo, 1988).This implies that all

the particles lying along the shear-parallel central line will be

set in motion at a right angle to the shear direction. The

combination of homogeneous shear flow, radial flow and the

tangential flow is likely to result in a set of closed streamlines

encased with open streamlines with convexity away from the

center of the body (Fig. 4e). In this construction no particles

lying on the shear plane can remain stationary, defining

stagnation points as in the case of flow patterns with bow-tie

shaped separatrix. A spherical body floating in an infinitely

extendedmatrix will necessarily show particle pathswith eye-

shaped separatrix, which is also evident from the velocity

functiongivenby Jeffery (1922) andHappel (1957). InSection

3 we attempt to explore and analyze probable factors leading

to flows with stagnation points in flow and thereby separatrix

with bow-tie shaped geometry.
3. Flow patterns in FEMs

3.1. Model parameters

We ran experiments in FEMLAB software to simulate



 

 

Fig. 4. Schematic illustrations of perturbations in shear flow due to the presence of a rigid inclusion. (a) A set of parallel lines representing streamlines of a

homogeneous shear flow. (b) Radial streamlines of flow perturbations due to spatial occupation of a circular inclusion in a stationary fluid. (c) Parallel

streamlines are distorted into bi-convex shapes when the perturbations in (b) are added. (d) Circular streamlines for flow induced by the rotational motion of a

rigid inclusion in a stationary fluid. (e) Streamline pattern obtained by superposing the streamlines in (c) and (d) one over another.
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flow patterns around a coherent, circular rigid inclusion, and

investigate how the choice of model parameters can lead to

variation in the nature of flow. The following parameters

have been considered in the simulations: (1) model/inclu-

sion dimension ratio (DR), (2) aspect ratio of model (AR),

and (3) boundary settings (Fig. 5). DR is the ratio of side

length of square models and inclusion diameter, which is

used as a measure of the volume proportion of the inclusion.

We choose DR to show how the flow pattern can vary

depending on the volume proportion occupied by the

inclusion in the model (cf. Samanta et al., 2003; Treagus

and Lan, 2004). The parameter DR and the parameter S of

Marques et al. (2005) may seem to be similar. However, DR

is to be distinguished from S, as the latter is a measure of

confinement of the matrix in the direction perpendicular to

the bulk shear.

AR is a parameter concerning rectangular FEMs, which is

used to investigate the effect of model geometry on the flow

pattern. We take AR as the ratio of model dimensions

parallel and perpendicular to the shear direction (Fig. 5a).

Model experiments were run imposing any of the following

three boundary settings (Fig. 5b): (a) homogeneous shear

displacements, (b) unconstrained lateral boundaries, and (c)

straight-out conditions. The first setting can be compared

with that adopted in shear box experiments, where the

model is deformed in simple shear by moving plates at its

four boundaries. Evidently, this condition does not match

with that in an infinitely extended inclusion–matrix system
being deformed under far-field simple shear, as the strain at

any finite distance from the inclusion will be essentially

heterogeneous, and will tend to be homogeneous only at

infinite distances. We have considered the second condition

to show the flow in models with lateral faces in an

unconstrained state. In this case the lateral model

boundaries are not displaced by moving any plates, as

done in shear box experiments, and the flow at the edges

deviates from that of homogeneous simple shear. With this

condition we aim to investigate the perturbed flow around a

rigid inclusion confined between two parallel rigid plates

moving in opposite directions, where the setting at the

lateral boundaries is given in terms of a constant pressure. In

FEMLAB one can impose the straight-out condition at the

side boundaries of the model, which is expressed using

mathematical equations as:

t:uZ 0 (10a)

pZ 0 (10b)

t is the unit tangent vector to the surface under

consideration. The condition given in Eq. (10a) implies

that flow at the model edges takes place normal to the model

boundaries, showing no tangential velocity component. The

second equation (Eq. (10b)) indicates that the lateral faces

of the model are free from any external pressure. The

velocity profile is thus likely to deviate from that of ideal

simple shear. This boundary condition is comparable with

that in ring shear (cf. Bons et al., 1997).



Fig. 5. (a) Definitions of model parameters: DR is the ratio of side length

square model (Dm) and inclusion diameter (Di) and AR is the aspect ratio of

rectangular model. (b) Three boundary conditions employed in finite

element models. The conditions are imposed in terms of velocity

components, u and v, parallel and perpendicular to the shear direction

and/or pressure p. _g is the rate of shear at the model boundaries.
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3.2. Effects of model/inclusion dimension ratio

We ran a set of experiments on square FEMs by varying

DR employing the boundary condition (a), mentioned in

Section 3.1. The velocity condition at the inclusion–matrix

interface was imposed considering that the inclusion rotates

at a rate half the bulk shear rate. Experimental runs show

that the flow pattern strongly varies when the model to

inclusion dimension ratio (DR) is changed. For a low

dimension ratio, e.g. DRZ2, the streamlines are character-

ized by bow-tie shaped separatrix. Particles in a large part of

the model away from the inclusion move across the central

shear plane and reverse their movement direction (Fig. 6a).

Values less than 2 (e.g. 1.2, 1.5, etc.) also yield similar

patterns with the difference that the stagnation points are

located closer to the inclusion. The separatrix between

particles with unidirectional and reversal motion are nearly

circular in shape, and its width is about one third of the

model dimension. The distance of the stagnation points
from the inclusion center is 1.13 times the inclusion radius.

The flow geometry is similar to those observed in systems

containing inclusion in high concentrations (fig. 5 of

Samanta et al., 2003). With increase in DR both the shape

of separatrix and the distances of the stagnation points vary

significantly. The streamlines corresponding to particles

with reverse motion become progressively narrower,

assuming a semi-elliptical shape. In addition, the distance

of stagnation points continuously increases with increasing

DR (Fig. 6b).

It should be mentioned that the nature of variation of the

geometry of flow and location of stagnation points with DR

(Fig. 6) is markedly different from that obtained by Marques

et al. (2005) by varying the parameter S (model width/

inclusion diameter) (their figs. 7–9). However, it is to be

noted that in our simulations we showed the effect of DR

with a constant aspect ratio of the model (Z1). In the

models of Marques et al. (2005), the value of S was varied

by changing both the model width and inclusion diameter

but keeping the model length constant. This implies that in

their analysis the model aspect ratio changed with changing

S. It thus appears that the variation in the flow pattern that

they assign only to S, perhaps includes also the effect of

aspect ratio of the model. In Section 3.3 we discuss how the

aspect ratio can independently affect the flow keeping the

inclusion diameter constant.

3.3. Effect of model aspect ratio

The flow pattern around an inclusion can change

significantly depending on the aspect ratio (AR) of the

model. When AR is low (Z0.5), the flow shows eye-

shaped separatrix (Fig. 7a). With increase in model ratio

(ARZ1), stagnation points appear and the flow defines a

bow-tie shaped separatrix (Fig. 7b). The bow-tie shaped

flow becomes more and more prominent with further

increase in shear parallel model dimension (Fig. 7c). It

should be noted that this variation occurs even though

the model width/inclusion diameter (i.e. the S value of

Marques et al., 2005) in both the models (Fig. 7b and c)

is the same.

3.4. Effects of mechanical conditions at model boundaries

In this section we demonstrate that the flow pattern can

be sensitive to dynamic conditions imposed at the model

boundaries, leading to contrasting types of flow. Let us first

consider models being deformed by simple shear. The

lateral faces of the models are kept unconstrained and free

of any pressure from the ambience (i.e. boundary condition-

b). Under such a condition, particles show close paths in the

model with aspect ratio 1. However, typical eye-shaped

geometry occurs only in the close neighborhood of the

inclusion (Fig. 8a). This boundary condition never produces

flow with bow-tie shaped separatrix even when the model

dimensions are reduced keeping the aspect ratio fixed at 1.



Fig. 6. (a) Flow patterns in models with varying inclusion/model dimension ratio (DR).DRZ2, 4 and 10 (left to right). Models were deformed by homogeneous

shear displacement at the four boundaries of model, as done in shear box experiments (first condition shown in Fig. 5b). (b) Variation in the distance of

stagnation points, normalized to Di, with increasing model/inclusion dimension ratio (DR).
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However, eye-shaped flow becomes complex when the

aspect ratio of model is increased to a critical value (e.g.

ARZ2). Two vortices form on either side of the inclusion,

which are somewhat elliptical in shape (Fig. 8b). The model

experiments suggest that FEM can give rise to a variety of

flow patterns depending on the combination of dynamic

settings at the model edges and the model geometry.

We ran a series of simulations imposing boundary

conditions as adopted in physical experiments, where the

model undergoes homogeneous shear with constrained

lateral boundaries (boundary condition-a). Under this

condition, flow with bow-tie shaped separatrix develop

(Fig. 8c). The hyperbolic streamlines become narrow and

the stagnation points move away from the inclusion with

increasing model dimension (DR), as shown in Section 3.3.

Under this condition the flow pattern does not change with

varying aspect ratio of models (Fig. 8d).

Under the straight-out conditions (Eqs. (10a) and (10b),

boundary condition-c) models show contrasting types of

flow patterns, depending on model aspect ratio, shown in

Section 3.3. Models with low aspect ratio show eye-shaped

flow pattern (e.g. Fig. 7a), which transforms into bow-tie

shaped with increasing aspect ratio (e.g. Fig. 7b).
4. Discussion

Several inclusion-associated structures, e.g. porphyro-

clast tails, drag folds, are often used for kinematic analysis

in shear zone rocks. Passchier and Simpson (1986) have

shown elegantly how one can utilize s- or d-type

porphyroclasts as shear sense indicator, considering their

stair-stepped wings. The stair-stepping in wing geometry of

d-type porphyroclasts depends on the type of flow around

the clasts (Passchier et al., 1993). For example, eye-shaped

flow patterns are likely to produce wings on either side of

the inclusion in the same plane, i.e. there is no stair-

stepping. On the other hand, bow-tie shaped flow forms

wings geometry with stair-stepping, which can be utilized

for determination of the shear sense. Both stair-stepped and

non-stair-stepped wings of porphyroclasts are observed in

naturally deformed rocks. We therefore need to find

possible physical factors determining the pattern of flow

around a rigid inclusion.

The streamline patterns around spherical rigid inclusions

are different in models of different workers, as discussed in

Section 3.3. The difference essentially crops up due to

consideration of models and the boundary settings imposed



Fig. 7. Effect of model aspect ratio (AR) on the flow pattern around rigid

inclusion. Insets show initial models. ARZ0.5, 1, 2 in (a)–(c). Models were

deformed by homogeneous shear at the top and bottom boundaries, keeping

a straight-out condition at the lateral boundaries (third boundary condition

shown in Fig. 5b).
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in the models (Bons et al., 1997). In the case of infinitely

extended viscous matrix, the flow is described in terms of

converging functions, which do not give rise to homo-

geneous flow field at any finite distance from the model. In

such a condition, the perturbations imparted by the rigid

body do not die out within a finite area (Masuda and

Mizuno, 1996). On the other hand, physical modeling or

finite element modeling involves boundary conditions

imposed at a finite distance from the rigid body. For

example, ideal simple shear conditions are imposed at the

model edges, which are not likely to prevail at the same

position had the matrix been considered as an infinitely

extended medium. It may be noted that a slight pressure

gradient far away from the inclusion can modify the flow
near the inclusion, which is somewhat similar to the

butterfly effect in the theory of Chaos. This is the reason

why FEMs show flow with bow-tie shaped separatrix, even

when its dimensions are large compared with that of the

inclusion. However, the effect of model dimension is

evident from the increasing distance of stagnation points

with increasing model dimension. The finding suggests that

a bow-tie shaped flow with stagnation points located at

infinite distances will resemble an eye-shaped flow (e.g.

Marques et al., 2005).

Two stagnation points on either side of the inclusion

characterize flow patterns with bow-tie shaped separatrix.

We need to resolve the most fundamental question—can a

particle have zero velocity in the flow field around an

inclusion in systems under simple shear? In homogeneous

simple shear all the particles on the central reference plane

have zero velocity. They are set in motion with velocity

component across the shear direction due to the pertur-

bations induced by the rotational motion of rigid inclusions

(Fig. 4d). The spatial occupancy of the sphere in the shear

flow does not contribute any perturbations on this plane,

which could result in velocity components across the shear

direction. This is evident from the streamline pattern of flow

around a stationary rigid sphere (fig. 31, Streeter, 1948).

Now the perturbations in the flow due to the rotational

motion of rigid inclusions are likely to prevail even at an

infinite distance from the inclusion. It is thus evident that

stagnation points are unlikely to exist in the flow field

around a rigid body, as seen in Eqs. (8b) and (9b). In

addition, in flows with bow-tie shaped separatrix, particles

on the central reference plane flow in the opposite direction

on either side of the stagnation points. It is rather difficult to

explain the movement of particles across the central plane

countering the rotational motion. It appears that this flow in

the matrix is set in response to the pressure field generated

due to the imposed motion set at the lateral boundaries of the

model. To test this, we ran simulations of streamlines in the

flow around a rigid body generated by rotating the lateral

boundaries dextrally and keeping the other faces in the same

positions. Such a boundary setting gives rise to hyperbolic

paths cutting across the central reference plane (Fig. 9a).

This type of flow is obtained even when the model

dimension is very large compared with that of the inclusion.

On the other hand, the plate motion parallel to the central

reference plane on an unconstrained model gives close paths

with velocity vectors acting opposite to that in the previous

model (Fig. 9b). Now, if we impose one over another, at

unique points the two velocity vectors cancel each other,

giving rise to stagnation points, and the overall flow pattern

resembles that of bow-tie shaped separatrix.

The FEMs described in Section 3.2 indicate that the flow

geometry is a function of the model/inclusion dimension

ratio, a parameter comparable with volume concentration of

inclusion in the system. It has been shown that volume

occupied by the inclusion in a FEM can greatly influence the

flow of matrix around the inclusion (Treagus and Lan,



Fig. 8. (a) and (b) Flow patterns in square models and rectangular (ARZ2) models with unconstrained lateral boundaries (second boundary condition shown in

Fig. 5b). (c) and (d) Bow-tie shaped flow patterns in models of two different aspect ratios. ARZ0.5 and 2. Homogeneous shear displacement (first condition

shown in Fig. 5b) was set at the model boundaries.
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2004). Samanta et al. (2003) presented an analysis of flow

around a rigid inclusion as a function of volume

concentration of inclusions. With decreasing concentration

bow-tie shaped flow transforms into eye-shaped (Fig. 5;

Samanta et al., 2003), which is consistent with the FEM

results obtained by increasing model/inclusion dimension

ratio (Fig. 6a). Flow with eye-separatrix should thus be

considered in analyzing inclusion-associated structures in

rocks containing inclusions in very low concentrations.

Kinematics of flow with bow-tie shaped separatrix would be

appropriate for systems with large inclusion concentrations,

irrespective of shear zone width.
Fig. 9. (a) Flow induced by shear displacement on the lateral model

boundaries. (b) Flow pattern developed in a model deformed by shear at the

top and bottom boundaries, keeping the lateral boundaries unconstrained.
5. Conclusions

Based on our overview, we arrive at the following

understandings. (1) The difference in observations on the

flow patterns around rigid inclusions is essentially due to

model constraints, as shown by Bons et al. (1997).

Analytical solutions for the flow field suggest that the

patterns will be essentially characterized by eye-shaped

separatrix and that there cannot be any stagnation points in

the flow around a rotating inclusion. (2) Flows with bow-tie

shaped separatrix is likely to occur in finite inclusion–matrix

systems, as reflected in the results of FEMs. When the

model/inclusion dimension ratio is low, the separatrix

defining the back flow regimes is nearly semi-circular,
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which progressively assumes an elliptical shape with

increasing dimension ratio. In such cases the stagnation

points continuously shift away from each other with

increasing model/inclusion dimension ratio. (3) The flow

pattern around a rigid inclusion can change dramatically

depending on the boundary settings in the model.

Unconstrained models in overall develop elliptical stream-

lines, and the flow in the neighborhood of inclusion show

eye-shaped separatrix, whereas finite models with straight-

out or homogeneous shear conditions of the boundary

settings show flows with bow-tie shaped separatrix. (4)

Under unconstrained state, eye-shaped flow turns into a flow

with two vortices on either side of inclusion when the aspect

ratio of model is large. (5) The use of flow patterns obtained

from finite models should be made with care while

interpreting natural structures in inclusion–matrix rock

systems.
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